Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38519054

RESUMO

Human leukocyte antigen (HLA) restriction of conventional T-cell targeting introduces complexity in generating T-cell therapy strategies for patients with cancer with diverse HLA-backgrounds. A subpopulation of atypical, major histocompatibility complex-I related protein 1 (MR1)-restricted T-cells, distinctive from mucosal-associated invariant T-cells (MAITs), was recently identified recognizing currently unidentified MR1-presented cancer-specific metabolites. It is hypothesized that the MC.7.G5 MR1T-clone has potential as a pan-cancer, pan-population T-cell immunotherapy approach. These cells are irresponsive to healthy tissue while conferring T-cell receptor(TCR) dependent, HLA-independent cytotoxicity to a wide range of adult cancers. Studies so far are limited to adult malignancies. Here, we investigated the potential of MR1-targeting cellular therapy strategies in pediatric cancer. Bulk RNA sequencing data of primary pediatric tumors were analyzed to assess MR1 expression. In vitro pediatric tumor models were subsequently screened to evaluate their susceptibility to engineered MC.7.G5 TCR-expressing T-cells. Targeting capacity was correlated with qPCR-based MR1 mRNA and protein overexpression. RNA expression of MR1 in primary pediatric tumors varied widely within and between tumor entities. Notably, embryonal tumors exhibited significantly lower MR1 expression than other pediatric tumors. In line with this, most screened embryonal tumors displayed resistance to MR1T-targeting in vitro MR1T susceptibility was observed particularly in pediatric leukemia and diffuse midline glioma models. This study demonstrates potential of MC.7.G5 MR1T-cell immunotherapy in pediatric leukemias and diffuse midline glioma, while activity against embryonal tumors was limited. The dismal prognosis associated with relapsed/refractory leukemias and high-grade brain tumors highlights the promise to improve survival rates of children with these cancers.


Assuntos
Glioma , Leucemia , Neoplasias Embrionárias de Células Germinativas , Humanos , Criança , Antígenos de Histocompatibilidade Classe I , Receptores de Antígenos de Linfócitos T , Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade Menor
2.
RMD Open ; 9(3)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37532471

RESUMO

OBJECTIVES: To assess to what extent leflunomide (LEF) and hydroxychloroquine (HCQ) therapy in patients with primary Sjögren's syndrome (RepurpSS-I) targets type I IFN-associated responses and to study the potential of several interferon associated RNA-based and protein-based biomarkers to predict and monitor treatment. METHODS: In 21 patients treated with LEF/HCQ and 8 patients treated with placebo, blood was drawn at baseline, 8, 16 and 24 weeks. IFN-signatures based on RNA expression of five IFN-associated genes were quantified in circulating mononuclear cells and in whole blood. MxA protein levels were measured in whole blood, and protein levels of CXCL10 and Galectin-9 were quantified in serum. Differences between responders and non-responders were assessed and receiver operating characteristic analysis was used to determine the capacity of baseline expression and early changes (after 8 weeks of treatment) in biomarkers to predict treatment response at the clinical endpoint. RESULTS: IFN-signatures in peripheral blood mononuclear cell and whole blood decreased after 24 weeks of LEF/HCQ treatment, however, changes in IFN signatures only poorly correlated with changes in disease activity. In contrast to baseline IFN signatures, baseline protein concentrations of galectin-9 and decreases in circulating MxA and Galectin-9 were robustly associated with clinical response. Early changes in serum Galectin-9 best predicted clinical response at 24 weeks (area under the curve 0.90). CONCLUSIONS: LEF/HCQ combination therapy targets type-I IFN-associated proteins that are associated with strongly decreased B cell hyperactivity and disease activity. IFN-associated Galectin-9 is a promising biomarker for treatment prediction and monitoring in pSS patients treated with LEF/HCQ.


Assuntos
Interferon Tipo I , Síndrome de Sjogren , Humanos , Biomarcadores , Hidroxicloroquina/uso terapêutico , Interferon Tipo I/metabolismo , Leflunomida/uso terapêutico , Leucócitos Mononucleares/metabolismo , Proteínas , RNA , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/tratamento farmacológico
3.
Ann Rheum Dis ; 82(3): 374-383, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36171070

RESUMO

OBJECTIVE: Type 2 conventional dendritic cells (cDC2s) are key orchestrators of inflammatory responses, linking innate and adaptative immunity. Here we explored the regulation of immunological pathways in cDC2s from patients with primary Sjögren's syndrome (pSS). METHODS: RNA sequencing of circulating cDC2s from patients with pSS, patients with non-Sjögren's sicca and healthy controls (HCs) was exploited to establish transcriptional signatures. Phenotypical and functional validation was performed in independent cohorts. RESULTS: Transcriptome of cDC2s from patients with pSS revealed alterations in type I interferon (IFN), toll-like receptor (TLR), antigen processing and presentation pathways. Phenotypical validation showed increased CX3CR1 expression and decreased integrin beta-2 and plexin-B2 on pSS cDC2s. Functional validation confirmed impaired capacity of pSS cDC2s to degrade antigens and increased antigen uptake, including self-antigens derived from salivary gland epithelial cells. These changes in antigen uptake and degradation were linked to anti-SSA/Ro (SSA) autoantibodies and the presence of type I IFNs. In line with this, in vitro IFN-α priming enhanced the uptake of antigens by HC cDC2s, reflecting the pSS cDC2 profile. Finally, pSS cDC2s compared with HC cDC2s increased the proliferation and the expression of CXCR3 and CXCR5 on proliferating CD4+ T cells. CONCLUSIONS: pSS cDC2s are transcriptionally altered, and the aberrant antigen uptake and processing, including (auto-)antigens, together with increased proliferation of tissue-homing CD4+ T cells, suggest altered antigen presentation by pSS cDC2s. These functional alterations were strongly linked to anti-SSA positivity and the presence of type I IFNs. Thus, we demonstrate novel molecular and functional pieces of evidence for the role of cDC2s in orchestrating immune response in pSS, which may yield novel avenues for treatment.


Assuntos
Interferon Tipo I , Síndrome de Sjogren , Humanos , Transcriptoma , Autoimunidade , Interferon-alfa , Células Epiteliais/metabolismo , Interferon Tipo I/genética
4.
Front Immunol ; 13: 840751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860283

RESUMO

Background: Trained immunity - or innate immune memory - can be described as the long-term reprogramming of innate immune cells towards a hyperresponsive state which involves intracellular metabolic changes. Trained immunity has been linked to atherosclerosis. A subgroup of patients with primary Sjögren's syndrome (pSS) exhibits systemic type I interferon (IFN) pathway activation, indicating innate immune hyperactivation. Here, we studied the link between type I IFNs and trained immunity in an in vitro monocytic cell model and peripheral blood mononuclear cells (PBMCs) from pSS patients. Methods: The training stimuli heat killed Candida albicans, muramyl dipeptide, IFNß, and patient serum were added to THP-1 cells for 24 hours, after which the cells were washed, rested for 48 hours and subsequently re-stimulated with LPS, Pam3Cys, poly I:C, IFNß or oxLDL for 4-24 hours. PBMCs from pSS patients and healthy controls were stimulated with LPS, Pam3Cys, poly I:C or IFNß for 0.5-24 hours. Results: Training with IFNß induced elevated production of pro-atherogenic cytokines IL-6, TNFα and CCL2, differential cholesterol- and glycolysis-related gene expression, and increased glucose consumption and oxLDL uptake upon re-stimulation. Type I IFN production was increased in Candida albicans- and IFNß-trained cells after LPS re-stimulation, but was reduced after poly I:C re-stimulation. Training with muramyl dipeptide and IFNß, but not Candida albicans, affected the IFN-stimulated gene expression response to IFNß re-stimulation. PBMCs from pSS patients consumed more glucose compared with healthy control PBMCs and tended to produce more TNFα and type I IFNs upon LPS stimulation, but less type I IFNs upon poly I:C stimulation. Conclusions: Type I IFN is a trainer inducing a trained immunity phenotype with pro-atherogenic properties in monocytes. Conversely, trained immunity also affects the production of type I IFNs and transcriptional response to type I IFN receptor re-stimulation. The phenotype of pSS PBMCs is consistent with trained immunity. This connection between type I IFN, trained immunity and cholesterol metabolism may have important implications for pSS and the pathogenesis of (subclinical) atherosclerosis in these patients.


Assuntos
Aterosclerose , Interferon Tipo I , Síndrome de Sjogren , Acetilmuramil-Alanil-Isoglutamina , Aterosclerose/metabolismo , Glucose/metabolismo , Humanos , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/metabolismo , Fenótipo , Poli I/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Exp Dermatol ; 31(6): 962-969, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297512

RESUMO

Interleukin (IL)-12 and IL-23 are pro-inflammatory cytokines produced by dendritic cells (DCs) and associated with Psoriasis (Pso) and Psoriatic Arthritis (PsA) pathogenesis. Tofacitinib, a Janus kinase inhibitor, effectively suppresses inflammatory cascades downstream the IL-12/IL-23 axis in Pso and PsA patients. Here, we investigated whether Tofacitinib directly regulates IL-12/IL-23 production in DCs, and how this regulation reflects responses to Tofacitinib in Pso patients. We treated monocyte-derived dendritic cells and myeloid dendritic cells with Tofacitinib and stimulated cells with either lipopolysaccharide (LPS) or a combination of LPS and IFN-γ. We assessed gene expression by qPCR, obtained skin microarray and blood Olink data and clinical parameters of Pso patients treated with Tofacitinib from public data sets. Our results indicate that in DCs co-stimulated with LPS and IFN-γ, but not with LPS alone, Tofacitinib leads to the decreased expression of IL-23/IL-12 shared subunit IL12B (p40). In Tofacitinib-treated Pso patients, IL-12 expression and psoriasis area and severity index (PASI) are significantly reduced in patients with higher IFN-γ at baseline. These findings demonstrate for the first time that Tofacitinib suppresses IL-23/IL-12 shared subunit IL12B in DCs upon active IFN-γ signaling, and that Pso patients with higher IFN-γ baseline levels display improved clinical response after Tofacitinib treatment.


Assuntos
Interferon gama , Subunidade p40 da Interleucina-12 , Inibidores de Janus Quinases , Piperidinas , Psoríase , Pirimidinas , Pele , Artrite Psoriásica/tratamento farmacológico , Células Dendríticas/imunologia , Humanos , Interferon gama/metabolismo , Subunidade p40 da Interleucina-12/antagonistas & inibidores , Subunidade p40 da Interleucina-12/sangue , Subunidade p40 da Interleucina-12/metabolismo , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Lipopolissacarídeos/imunologia , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Psoríase/tratamento farmacológico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pele/efeitos dos fármacos , Pele/imunologia
6.
Cell Rep ; 38(1): 110189, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986347

RESUMO

Fibrosis is a major cause of mortality worldwide, characterized by myofibroblast activation and excessive extracellular matrix deposition. Systemic sclerosis is a prototypic fibrotic disease in which CXCL4 is increased and strongly correlates with skin and lung fibrosis. Here we aim to elucidate the role of CXCL4 in fibrosis development. CXCL4 levels are increased in multiple inflammatory and fibrotic mouse models, and, using CXCL4-deficient mice, we demonstrate the essential role of CXCL4 in promoting fibrotic events in the skin, lungs, and heart. Overexpressing human CXCL4 in mice aggravates, whereas blocking CXCL4 reduces, bleomycin-induced fibrosis. Single-cell ligand-receptor analysis predicts CXCL4 to affect endothelial cells and fibroblasts. In vitro, we confirm that CXCL4 directly induces myofibroblast differentiation and collagen synthesis in different precursor cells, including endothelial cells, by stimulating endothelial-to-mesenchymal transition. Our findings identify a pivotal role of CXCL4 in fibrosis, further substantiating the potential role of neutralizing CXCL4 as a therapeutic strategy.


Assuntos
Matriz Extracelular/patologia , Miofibroblastos/metabolismo , Fator Plaquetário 4/metabolismo , Fibrose Pulmonar/patologia , Escleroderma Sistêmico/patologia , Animais , Bleomicina/toxicidade , Linhagem Celular , Colágeno/biossíntese , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/citologia , Pericitos/metabolismo , Fator Plaquetário 4/genética , Células Estromais/citologia , Células Estromais/metabolismo
7.
Rheumatology (Oxford) ; 61(8): 3491-3496, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35022662

RESUMO

OBJECTIVES: Cytosolic DNA-sensing pathway stimulation prompts type I IFN (IFN-I) production, but its role in systemic IFN-I pathway activation in primary SS (pSS) is poorly studied. Here we investigate the responsiveness of pSS monocytes and plasmacytoid dendritic cells (pDCs) to stimulator of interferon genes (STING) activation in relation to systemic IFN-I pathway activation and compare this with SLE. METHODS: Expression of DNA-sensing receptors cGAS, IFI16, ZBP-1 and DDX41, signalling molecules STING, TBK1 and IRF3, positive and negative STING regulators, and IFN-I-stimulated genes MxA, IFI44, IFI44L, IFIT1 and IFIT3 was analysed in whole blood, CD14+ monocytes, pDCs, and salivary glands by RT-PCR, monocyte RNA sequencing data, flow cytometry and immunohistochemical staining. Peripheral blood mononuclear cells (PBMCs) from pSS, SLE and healthy controls (HCs) were stimulated with STING agonist 2'3'-cGAMP. STING phosphorylation (pSTING) and intracellular IFNα were evaluated using flow cytometry. RESULTS: STING activation induced a significantly higher proportion of IFNα-producing monocytes, but not pDCs, in both IFN-low and IFN-high pSS compared with HC PBMCs. Additionally, a trend towards more pSTING+ monocytes was observed in pSS and SLE, most pronounced in IFN-high patients. Positive STING regulators TRIM38, TRIM56, USP18 and SENP7 were significantly higher expression in pSS than HC monocytes, while the dual-function STING regulator RNF26 was downregulated in pSS monocytes. STING was expressed in mononuclear infiltrates and ductal epithelium in pSS salivary glands. STING stimulation induced pSTING and IFNα in pSS and SLE pDCs. CONCLUSION: pSS monocytes and pDCs are hyperresponsive to stimulation of the STING pathway, which was not restricted to patients with IFN-I pathway activation.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Síndrome de Sjogren , DNA , Humanos , Interferon Tipo I/metabolismo , Interferon-alfa/metabolismo , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Monócitos/metabolismo , Proteínas de Neoplasias/metabolismo , Síndrome de Sjogren/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases
8.
Front Immunol ; 12: 701656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413853

RESUMO

Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by infiltration of the exocrine glands and prominent B cell hyperactivity. Considering the key role of monocytes in promoting B cell hyperactivity, we performed RNA-sequencing analysis of CD14+ monocytes from patients with pSS, non-Sjögren's sicca (nSS), and healthy controls (HC). We demonstrated that the transcriptomic profile of pSS patients is enriched in intermediate and non-classical monocyte profiles, and confirmed the increased frequency of non-classical monocytes in pSS patients by flow-cytometry analysis. Weighted gene co-expression network analysis identified four molecular signatures in monocytes from pSS patients, functionally annotated for processes related with translation, IFN-signaling, and toll-like receptor signaling. Systemic and local inflammatory features significantly correlated with the expression of these signatures. Furthermore, genes highly associated with clinical features in pSS were identified as hub-genes for each signature. Unsupervised hierarchical cluster analysis of the hub-genes identified four clusters of nSS and pSS patients, each with distinct inflammatory and transcriptomic profiles. One cluster showed a significantly higher percentage of pSS patients with higher prevalence of anti-SSA autoantibodies, interferon-score, and erythrocyte sedimentation rate compared to the other clusters. Finally, we showed that the identified transcriptomic differences in pSS monocytes were induced in monocytes of healthy controls by exposure to serum of pSS patients. Representative hub-genes of all four signatures were partially inhibited by interferon-α/ß receptor blockade, indicating that the circulating inflammatory mediators, including type I interferons have a significant contribution to the altered transcriptional profile of pSS-monocytes. Our study suggests that targeting key circulating inflammatory mediators, such as type I interferons, could offer new insights into the important pathways and mechanisms driving pSS, and holds promise for halting immunopathology in Sjögren's Syndrome.


Assuntos
Inflamação/genética , Monócitos/patologia , Síndrome de Sjogren/genética , Síndrome de Sjogren/patologia , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoanticorpos/genética , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Interferon Tipo I/genética , Receptores de Lipopolissacarídeos/genética , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética , Receptores Toll-Like/genética , Adulto Jovem
9.
Front Immunol ; 12: 702733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386009

RESUMO

Introduction: CCR9+ Tfh-like pathogenic T helper (Th) cells are elevated in patients with primary Sjögren's syndrome (pSS) and indicated to play a role in pSS immunopathology. Here we delineate the CCR9+ Th cell-specific transcriptome to study the molecular dysregulation of these cells in pSS patients. Methods: CCR9+, CXCR5+ and CCR9-CXCR5- Th cells from blood of 7 healthy controls (HC) and 7 pSS patients were FACS sorted and RNA sequencing was performed. Computational analysis was used to identify differentially expressed genes (DEGs), coherent gene expression networks and differentially regulated pathways. Target genes were replicated in additional cohorts. Results: 5131 genes were differentially expressed between CCR9+ and CXCR5+ Th cells; 6493 and 4783 between CCR9+ and CCR9-CXCR5- and between CXCR5+ and CCR9-CXCR5-, respectively. In the CCR9+ Th cell subset 2777 DEGs were identified between HC and pSS patients, 1416 and 1077 in the CXCR5+ and CCR9-CXCR5- subsets, respectively. One gene network was selected based on eigengene expression differences between the Th cell subsets and pathways enriched for genes involved in migration and adhesion, cytokine and chemokine production. Selected DEGs of interest (HOPX, SOX4, ITGAE, ITGA1, NCR3, ABCB1, C3AR1, NT5E, CCR5 and CCL5) from this module were validated and found upregulated in blood CCR9+ Th cells, but were similarly expressed in HC and pSS patients. Increased frequencies of CCR9+ Th cells were shown to express higher levels of CCL5 than CXCR5+ and CCR9-CXCR5- Th cells, with the highest expression confined to effector CCR9+ Th cells. Antigenic triggering and stimulation with IL-7 of the Th cell subsets co-cultured with monocytes strongly induced CCL5 secretion in CCR9+ Th cell cocultures. Additionally, effector CCR9+ Th cells rapidly released CCL5 and secreted the highest CCL5 levels upon stimulation. Conclusion: Transcriptomic analysis of circulating CCR9+ Th cells reveals CCR9-specific pathways involved in effector T cell function equally expressed in pSS patients and HC. Given the increased numbers of CCR9+ Th cells in the blood and inflamed glands of pSS patients and presence of inflammatory stimuli to activate these cells this suggests that CCR9-specific functions, such as cell recruitment upon CCL5 secretion, could significantly contribute to immunopathology in pSS.


Assuntos
Quimiocina CCL5/imunologia , Receptores CCR/imunologia , Síndrome de Sjogren/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Adulto , Idoso , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade
10.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333969

RESUMO

Angiopoietin-2 (Ang-2), a ligand of the tyrosine kinase receptor Tie2, is essential for vascular development and blood vessel stability and is also involved in monocyte activation. Here, we examined the role of Ang-2 on monocyte activation in patients with systemic sclerosis (SSc). Ang-2 levels were measured in serum and skin of healthy controls (HCs) and SSc patients by ELISA and array profiling, respectively. mRNA expression of ANG2 was analyzed in monocytes, dermal fibroblasts, and human pulmonary arterial endothelial cells (HPAECs) by quantitative PCR. Monocytes were stimulated with Ang-2, or with serum from SSc patients in the presence of a Tie2 inhibitor or an anti-Ang2 neutralizing antibody. Interleukin (IL)-6 and IL-8 production was analyzed by ELISA. Ang-2 levels were elevated in the serum and skin of SSc patients compared to HCs. Importantly, serum Ang-2 levels correlated with clinical disease parameters, such as skin involvement. Lipopolysaccharide (LPS) LPS, R848, and interferon alpha2a (IFN-α) stimulation up-regulated the mRNA expression of ANG2 in monocytes, dermal fibroblasts, and HPAECs. Finally, Ang-2 induced the production of IL-6 and IL-8 in monocytes of SSc patients, while the inhibition of Tie2 or the neutralization of Ang-2 reduced the production of both cytokines in HC monocytes stimulated with the serum of SSc patients. Therefore, Ang-2 induces inflammatory activation of SSc monocytes and neutralization of Ang-2 might be a promising therapeutic target in the treatment of SSc.


Assuntos
Angiopoietina-2/metabolismo , Biomarcadores , Mediadores da Inflamação/metabolismo , Monócitos/metabolismo , Escleroderma Sistêmico/etiologia , Escleroderma Sistêmico/metabolismo , Adulto , Idoso , Angiopoietina-2/sangue , Estudos de Casos e Controles , Citocinas/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Escleroderma Sistêmico/patologia , Pele/metabolismo
11.
Front Immunol ; 11: 2149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042127

RESUMO

Fibrosis is a condition shared by numerous inflammatory diseases. Our incomplete understanding of the molecular mechanisms underlying fibrosis has severely hampered effective drug development. CXCL4 is associated with the onset and extent of fibrosis development in multiple inflammatory and fibrotic diseases. Here, we used monocyte-derived cells as a model system to study the effects of CXCL4 exposure on dendritic cell development by integrating 65 longitudinal and paired whole genome transcriptional and methylation profiles. Using data-driven gene regulatory network analyses, we demonstrate that CXCL4 dramatically alters the trajectory of monocyte differentiation, inducing a novel pro-inflammatory and pro-fibrotic phenotype mediated via key transcriptional regulators including CIITA. Importantly, these pro-inflammatory cells directly trigger a fibrotic cascade by producing extracellular matrix molecules and inducing myofibroblast differentiation. Inhibition of CIITA mimicked CXCL4 in inducing a pro-inflammatory and pro-fibrotic phenotype, validating the relevance of the gene regulatory network. Our study unveils that CXCL4 acts as a key secreted factor driving innate immune training and forming the long-sought link between inflammation and fibrosis.


Assuntos
Células Dendríticas/citologia , Fibrose/imunologia , Redes Reguladoras de Genes , Inflamação/imunologia , Fator Plaquetário 4/fisiologia , Transcriptoma , Células Cultivadas , Técnicas de Reprogramação Celular , Metilação de DNA , Árvores de Decisões , Decitabina/farmacologia , Fibroblastos , Fibrose/genética , Humanos , Inflamação/genética , Monócitos/citologia , Análise de Escalonamento Multidimensional , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/fisiologia , Poli I-C/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA-Seq , Transativadores/antagonistas & inibidores , Transativadores/fisiologia
12.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971928

RESUMO

Semaphorin (Sema)4A is a transmembrane glycoprotein that is elevated in several autoimmune diseases such as systemic sclerosis, rheumatoid arthritis and multiple sclerosis. Sema4A has a key role in the regulation of Thelper Th1 and Th2 differentiation and we recently demonstrated that CD4+ T cell activation induces the expression of Sema4A. However, the autocrine role of Sema4A on Th cell differentiation remains unknown. Naïve Th cells from healthy controls were cell sorted and differentiated into Th1, Th2 and Th17 in the presence or absence of a neutralizing antibody against the Sema4A receptor PlexinD1. Gene expression was determined by quantitative PCR and protein expression by ELISA and flow cytometry. We found that the expression of Sema4A is induced during Th1, Th2 and Th17 differentiation. PlexinD1 neutralization induced the differentiation of Th1 cells, while reduced the Th2 and Th17 skewing. These effects were associated with an upregulation of the transcription factor T-bet by Th1 cells, and to downregulation of GATA3 and RORγt in Th2 cells and Th17 cells, respectively. Finally, PlexinD1 neutralization regulates the systemic sclerosis patients serum-induced cytokine production by CD4+ T cells. Therefore, the autocrine Sema4A-PlexinD1 signaling acts as a negative regulator of Th1 skewing but is a key mediator on Th2 and Th17 differentiation, suggesting that dysregulation of this axis might be implicated in the pathogenesis of CD4+ T cell-mediated diseases.


Assuntos
Comunicação Autócrina/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Glicoproteínas de Membrana/imunologia , Semaforinas/imunologia , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Diferenciação Celular/imunologia , Citocinas/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/patologia , Células Th1/patologia , Células Th17/patologia , Células Th2/patologia
13.
Rheumatology (Oxford) ; 59(2): 426-438, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31377797

RESUMO

OBJECTIVE: To examine the role of Tie2 signalling in macrophage activation within the context of the inflammatory synovial microenvironment present in patients with RA and PsA. METHODS: Clinical responses and macrophage function were examined in wild-type and Tie2-overexpressing (Tie2-TG) mice in the K/BxN serum transfer model of arthritis. Macrophages derived from peripheral blood monocytes from healthy donors, RA and PsA patients, and RA and PsA synovial tissue explants were stimulated with TNF (10 ng/ml), angiopoietin (Ang)-1 or Ang-2 (200 ng/ml), or incubated with an anti-Ang2 neutralizing antibody. mRNA and protein expression of inflammatory mediators was analysed by quantitative PCR, ELISA and Luminex. RESULTS: Tie2-TG mice displayed more clinically severe arthritis than wild-type mice, accompanied by enhanced joint expression of IL6, IL12B, NOS2, CCL2 and CXCL10, and activation of bone marrow-derived macrophages in response to Ang-2 stimulation. Ang-1 and Ang-2 significantly enhanced TNF-induced expression of pro-inflammatory cytokines and chemokines in macrophages from healthy donors differentiated with RA and PsA SF and peripheral blood-derived macrophages from RA and PsA patients. Both Ang-1 and Ang-2 induced the production of IL-6, IL-12p40, IL-8 and CCL-3 in synovial tissue explants of RA and PsA patients, and Ang-2 neutralization suppressed the production of IL-6 and IL-8 in the synovial tissue of RA patients. CONCLUSION: Tie2 signalling enhances TNF-dependent activation of macrophages within the context of ongoing synovial inflammation in RA and PsA, and neutralization of Tie2 ligands might be a promising therapeutic target in the treatment of these diseases.


Assuntos
Artrite Experimental/metabolismo , Artrite Psoriásica/metabolismo , Artrite Reumatoide/metabolismo , Ativação de Macrófagos/fisiologia , Receptor TIE-2/metabolismo , Membrana Sinovial/metabolismo , Animais , Artrite Experimental/patologia , Artrite Psoriásica/patologia , Artrite Reumatoide/patologia , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Líquido Sinovial/metabolismo , Membrana Sinovial/patologia
14.
Eur J Immunol ; 50(1): 119-129, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31424086

RESUMO

Systemic sclerosis (SSc), systemic lupus erythematosus (SLE) and primary Sjögrens syndrome (pSS) are clinically distinct systemic autoimmune diseases (SADs) that share molecular pathways. We quantified the frequency of circulating immune-cells in 169 patients with these SADs and 44 healty controls (HC) using mass-cytometry and assessed the diagnostic value of these results. Alterations in the frequency of immune-cell subsets were present in all SADs compared to HC. Most alterations, including a decrease of CD56hi NK-cells in SSc and IgM+ Bcells in pSS, were disease specific; only a reduced frequency of plasmacytoid dendritic cells was common between all SADs Strikingly, hierarchical clustering of SSc patients identified 4 clusters associated with different clinical phenotypes, and 9 of the 12 cell subset-alterations in SSc were also present during the preclinical-phase of the disease. Additionally, we found a strong association between the use of prednisone and alterations in B-cell subsets. Although differences in immune-cell frequencies between these SADs are apparent, the discriminative value thereof is too low for diagnostic purposes. Within each disease, mass cytometry analyses revealed distinct patterns between endophenotypes. Given the lack of tools enabling early diagnosis of SSc, our results justify further research into the value of cellular phenotyping as a diagnostic aid.


Assuntos
Citometria de Fluxo/métodos , Lúpus Eritematoso Sistêmico/imunologia , Escleroderma Sistêmico/imunologia , Síndrome de Sjogren/imunologia , Adulto , Idoso , Feminino , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Masculino , Pessoa de Meia-Idade , Fenótipo , Escleroderma Sistêmico/diagnóstico , Síndrome de Sjogren/diagnóstico
15.
J Vet Diagn Invest ; 31(5): 774-777, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31378197

RESUMO

Toxoplasma gondii is a protozoan parasite with worldwide distribution. The accurate detection of this zoonotic agent in cats and other hosts has public health importance. Blood samples from 89 domestic cats were tested for antibodies to T. gondii using 2 commercial agglutination test kits, an indirect (IHAT; Toxo-HAI FUMOUZE; Fumouze Diagnostics) and a modified (MAT; Toxoscreen DA; bioMérieux) agglutination test. Antibodies were found in 16 of 89 (18%) cats by the IHAT and in 23 of 89 (26%) cats by the MAT, with an overall agreement between the 2 serologic tests of 92% (κ = 0.77; i.e., substantial agreement beyond chance). Considering the MAT as the gold standard, the IHAT showed perfect relative specificity (100%) and lower relative sensitivity (70%). The suboptimal sensitivity of the IHAT limits its use in epidemiologic studies in cats.


Assuntos
Testes de Aglutinação/veterinária , Anticorpos Antiprotozoários/sangue , Doenças do Gato/diagnóstico , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/diagnóstico , Testes de Aglutinação/métodos , Animais , Doenças do Gato/parasitologia , Gatos , Sensibilidade e Especificidade , Toxoplasmose Animal/parasitologia
16.
Front Immunol ; 10: 1335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281310

RESUMO

Objectives: Considering the critical role of microRNAs (miRNAs) in regulation of cell activation, we investigated their role in circulating type-2 conventional dendritic cells (cDC2s) of patients with primary Sjögren's syndrome (pSS) compared to healthy controls (HC). Methods: CD1c-expressing cDC2s were isolated from peripheral blood. A discovery cohort (15 pSS, 6 HC) was used to screen the expression of 758 miRNAs and a replication cohort (15 pSS, 11 HC) was used to confirm differential expression of 18 identified targets. Novel targets for two replicated miRNAs were identified by SILAC in HEK-293T cells and validated in primary cDC2s. Differences in cytokine production between pSS and HC cDC2s were evaluated by intracellular flow-cytometry. cDC2s were cultured in the presence of MSK1-inhibitors to investigate their effect on cytokine production. Results: Expression of miR-130a and miR-708 was significantly decreased in cDC2s from pSS patients compared to HC in both cohorts, and both miRNAs were downregulated upon stimulation via endosomal TLRs. Upstream mediator of cytokine production MSK1 was identified as a novel target of miR-130a and overexpression of miR-130a reduced MSK1 expression in cDC2s. pSS cDC2s showed higher MSK1 expression and an increased fraction of IL-12 and TNF-α-producing cells. MSK1-inhibition reduced cDC2 activation and production of IL-12, TNF-α, and IL-6. Conclusions: The decreased expression of miR-130a and miR-708 in pSS cDC2s seems to reflect cell activation. miR-130a targets MSK1, which regulates pro-inflammatory cytokine production, and we provide proof-of-concept for MSK1-inhibition as a therapeutic avenue to impede cDC2 activity in pSS.


Assuntos
Citocinas/imunologia , Células Dendríticas , MicroRNAs/imunologia , Proteínas Quinases S6 Ribossômicas 90-kDa/imunologia , Síndrome de Sjogren , Adulto , Idoso , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/patologia
17.
Rheumatology (Oxford) ; 57(9): 1669-1674, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29873766

RESUMO

Objective: To investigate miRNA expression in relation to transcriptomic changes in plasmacytoid dendritic cells (pDCs) in SLE and APS. pDCs are major producers of IFNα in SLE and APS, and miRNAs are emerging as regulators of pDC activation. Methods: miRNA and mRNA expression were measured by OpenArray and RNA-sequencing in pDCs of SLE, SLE + APS (APS secondary to SLE) and primary APS (PAPS) patients. The miRNA profile of patients was compared with the miRNA pattern of TLR7-activated pDCs. Results: Among 131 miRNAs detected in pDCs, 35, 17 and 21 had a significantly lower level of expression in SLE, SLE + APS and PAPS patients, respectively, as compared with healthy controls (HC). Notably, the miRNA profile did not significantly differ between SLE and APS, but was driven by the presence or absence of an IFN signature. TLR7 stimulation induced a general downregulation of miRNAs, similar to the pattern observed in SLE and APS patients. miR-361-5p, miR-128-3p and miR-181a-2-3p expression was lower in patients with a high IFN signature (false discovery rate <0.05) as compared with patients with a low IFN signature and HCs. Pathway enrichment on the overlap of miRNA targets and upregulated genes from the RNAseq indicated that these miRNAs are involved in pDC activation and apoptosis. Conclusion: Lower miRNA expression in pDCs is shared between SLE, SLE + APS and PAPS and is related to the IFN signature. As pDCs are the alleged source of the IFN signature in these patients, a better understanding of the molecular mechanisms/pathways leading to pDC dysregulation in SLE and APS might open novel pathways for therapeutic intervention.


Assuntos
Síndrome Antifosfolipídica/genética , Células Dendríticas/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Lúpus Eritematoso Sistêmico/genética , MicroRNAs/genética , Receptor 7 Toll-Like/genética , Adulto , Síndrome Antifosfolipídica/metabolismo , Células Dendríticas/patologia , Feminino , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Masculino , MicroRNAs/biossíntese , RNA Mensageiro/genética , Receptor 7 Toll-Like/biossíntese
18.
PLoS One ; 13(2): e0193157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447268

RESUMO

BACKGROUND: Considering the important role of miRNAs in the regulation of post-transcriptional expression of target genes, we investigated circulating small non-coding RNAs (snc)RNA levels in patients with primary Sjögren's syndrome (pSS). In addition we assessed if serum sncRNA levels can be used to differentiate patients with specific disease features. METHODS: Serum RNA was isolated from 37 pSS patients as well as 21 patients with incomplete Sjögren's Syndrome (iSS) and 17 healthy controls (HC) allocated to two independent cohorts: discovery and validation. OpenArray profiling of 758 sncRNAs was performed in the discovery cohort. Selected sncRNAs were measured in the validation cohort using single-assay RT-qPCR. In addition, unsupervised hierarchical clustering was performed within the pSS group. RESULTS: Ten sncRNAs were differentially expressed between the groups in the array. In the validation cohort, we confirmed the increased expression of U6-snRNA and miR-661 in the iSS group as compared to HC. We were unable to validate differential expression of any miRNAs in the pSS group. However, within this group several miRNAs correlated with laboratory parameters. Unsupervised clustering distinguished three clusters of pSS patients. Patients in one cluster showed significantly higher serum IgG, prevalence of anti-SSB autoantibodies, IFN-score, and decreased leukocyte counts compared to the two other clusters. CONCLUSION: We were unable to identify any serum sncRNAs with differential expression in pSS patients. However, we show that circulating miRNA levels are associated with disease parameters in pSS patients and can be used to distinguish pSS patients with more severe B cell hyperactivity. As several of these miRNAs are implicated in the regulation of B cells, they may play a role in the perpetuation of the disease.


Assuntos
Linfócitos B/imunologia , Interferons/sangue , Pequeno RNA não Traduzido/sangue , Síndrome de Sjogren/sangue , Adulto , Idoso , Autoanticorpos/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Síndrome de Sjogren/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...